
IO Ninja
Introduction



Motivation
Why did we create IO Ninja?



Debugging Tools for Serial-over-IP Devices

 Terminals

 Serial terminal

 TCP terminal 

 TCP client

 TCP server

 UDP terminal 

 UDP broadcasts required!

 Binary data handling

 Sniffers

 Serial

 TCP

 UDP



What a Mess!



Design Goals

 All-in-one IO debugger

 Consistent interface

 Cross-platform

 Advanced logging engine

 Advanced transmitting engine

 Highly modularized

 Scriptable



Design Goals

 All-in-one IO debugger

 Consistent interface

 Cross-platform

 Advanced logging engine

 Advanced transmitting engine

 Highly modularized

 Scriptable



Design Goals

 All-in-one IO debugger

 Consistent interface

 Cross-platform

 Advanced logging engine

 Advanced transmitting engine

 Highly modularized

 Scriptable



Design Goals

 All-in-one IO debugger

 Consistent interface

 Cross-platform

 Advanced logging engine

 Advanced transmitting engine

 Highly modularized

 Scriptable



Design Goals

 All-in-one IO debugger

 Consistent interface

 Cross-platform

 Advanced logging engine

 Advanced transmitting engine

 Highly modularized

 Scriptable



All-in-One
Access all kinds of IO – through a consistent user interface!



Serial Communications

 Serial Terminal

 Serial Software Sniffers

 Local

 Remote over SSH

 Serial Hardware Sniffers

 IO Ninja Serial Tap

 Generic Dual COM Tap

 EZ-Tap Pro

 I2C/SPI Hardware Tap

 Modbus RTU/ASCII/TCP Analyzer



Serial Communications

 Serial Terminal

 Serial Software Sniffers

 Local

 Remote over SSH

 Serial Hardware Sniffers

 IO Ninja Serial Tap

 Generic Dual COM Tap

 EZ-Tap Pro

 I2C/SPI Hardware Tap

 Modbus RTU/ASCII/TCP Analyzer



Serial Communications

 Serial Terminal

 Serial Software Sniffers

 Local

 Remote over SSH

 Serial Hardware Sniffers

 IO Ninja Serial Tap

 Generic Dual COM Tap

 EZ-Tap Pro

 I2C/SPI Hardware Tap

 Modbus RTU/ASCII/TCP Analyzer



Serial Communications

 Serial Terminal

 Serial Software Sniffers

 Local

 Remote over SSH

 Serial Hardware Sniffers

 IO Ninja Serial Tap

 Generic Dual COM Tap

 EZ-Tap Pro

 I2C/SPI Hardware Tap

 Modbus RTU/ASCII/TCP Analyzer



Serial Communications

 Serial Terminal

 Serial Software Sniffers

 Local

 Remote over SSH

 Serial Hardware Taps

 IO Ninja Serial Tap

 Generic Dual COM Tap

 EZ-Tap Pro

 I2C/SPI Hardware Tap

 Modbus RTU/ASCII/TCP Analyzer



Network Communications

 TCP

 TCP Client

 TCP Server

 TCP Proxy

 TCP Flow Monitor

 UDP

 UDP Socket (supports broadcast)

 UDP Flow Monitor

 SSL & SSH

 SSL Client

 SSL Server

 SSH Channel

 Ethernet Hardware Tap

 Pcap Sniffer



Network Communications

 TCP

 TCP Client

 TCP Server

 TCP Proxy

 TCP Flow Monitor

 UDP

 UDP Socket (supports broadcast)

 UDP Flow Monitor

 SSL & SSH

 SSL Client

 SSL Server

 SSH Channel

 Ethernet Hardware Tap

 Pcap Sniffer



Network Communications

 TCP

 TCP Client

 TCP Server

 TCP Proxy

 TCP Flow Monitor

 UDP

 UDP Socket (supports broadcast)

 UDP Flow Monitor

 SSL & SSH

 SSL Client

 SSL Server

 SSH Channel

 Ethernet Hardware Tap

 Pcap Sniffer



Network Communications

 TCP

 TCP Client

 TCP Server

 TCP Proxy

 TCP Flow Monitor

 UDP

 UDP Socket (supports broadcast)

 UDP Flow Monitor

 SSL & SSH

 SSL Client

 SSL Server

 SSH Channel

 Ethernet Hardware Tap

 Pcap Sniffer



Network Communications

 TCP

 TCP Client

 TCP Server

 TCP Proxy

 TCP Flow Monitor

 UDP

 UDP Socket (supports broadcast)

 UDP Flow Monitor

 SSL & SSH

 SSL Client

 SSL Server

 SSH Channel

 Ethernet Hardware Tap

 Pcap Sniffer



File Systems

 Generic File Stream

 Windows Named/Anonymous Pipes

 Named Pipe Terminal

 Pipe Sniffer

 Windows Mailslots

 Mailslot Terminal

 Mailslot Sniffer



File Systems

 Generic File Stream

 Windows Named/Anonymous Pipes

 Named Pipe Terminal

 Pipe Sniffer

 Windows Mailslots

 Mailslot Terminal

 Mailslot Sniffer



File Systems

 Generic File Stream

 Windows Named/Anonymous Pipes

 Named Pipe Terminal

 Pipe Sniffer

 Windows Mailslots

 Mailslot Terminal

 Mailslot Sniffer



USB Communications

 USB Data Endpoint Terminal

 USB Control Endpoint Terminal



USB Communications

 USB Data Endpoint Terminal

 USB Control Endpoint Terminal



Miscellaneous

 J-Link RTT Terminal



Ninja Scroll (Logging Engine)
Intuitive, beautiful, and lightning-fast!



Ninja Scroll Features

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a single 
continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)



Ninja Scroll Features

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a 
single continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)



Ninja Scroll Overview

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a single 
continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries!)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)



Ninja Scroll Features

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a single 
continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries!)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)



Ninja Scroll Features

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a single 
continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries!)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)



Ninja Scroll Features

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a single 
continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries!)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)



Ninja Scroll Features

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a single 
continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries!)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)



Ninja Scroll Features

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a single 
continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries!)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)



Ninja Scroll Features

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a single 
continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries!)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)



Ninja Scroll Features

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a single 
continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries!)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)



Advanced Transmitting Engine
Shines at binary packet transmission!



Transmit Features

 Text input with support for escape sequences

 Hex-editor

 File transmit

 Packet templates

 Script transmit



Transmit Features

 Text input with support for escape sequences

 Hex-editor

 File transmit

 Packet templates

 Script transmit



Transmit Features

 Text input with support for escape sequences

 Hex-editor

 File transmit

 Packet templates

 Script transmit



Transmit Features

 Text input with support for escape sequences

 Hex-editor

 File transmit

 Packet templates

 Script transmit



Transmit Features

 Text input with support for escape sequences

 Hex-editor

 File transmit

 Packet templates

 Script transmit



Highly Modularized
Lego-like – everything combines as long as it makes sense!



Application Architecture

 Main process (ioninja)

 UI frontend

 Server process (ioninja-server)

 Ninja scroll server

 Jancy runtime environment & stdlib

 API for plugin scripts

 All plugins are written in Jancy scripting 

language and open-source!



Application Architecture

 Main process (ioninja)

 UI frontend

 Server process (ioninja-server)

 Ninja scroll server

 Jancy RTL & stdlib

 IO Ninja API for plugins

 All plugins are written in Jancy scripting 

language and open-source!



Application Architecture

 Main process (ioninja)

 UI frontend

 Server process (ioninja-server)

 Ninja scroll server

 Jancy runtime environment & stdlib

 API for plugin scripts

 All plugins are written in Jancy

scripting language and open-source!



Plugin Architecture

 Sessions

 Sessions are linkable!

 Layers

 Protocol analyzers

 Protocol transceivers

 Data highlighters

 Log filters

 Transmission extenders
(prefix/suffix/encode/checksum/etc)

 Testing utilities

 …



Plugin Architecture

 Sessions

 Sessions are linkable!

 Layers

 Protocol analyzers

 Protocol transceivers

 Data highlighters

 Log filters

 Transmission extenders
(prefix/suffix/encode/checksum/etc)

 Testing utilities

 …



Plugin Architecture

 Sessions

 Sessions are linkable!

 Layers

 Protocol analyzers

 Protocol transceivers

 Data highlighters

 Log filters

 Transmission extenders
(prefix/suffix/encode/checksum/etc)

 Testing utilities

 …



Plugin Architecture

 Sessions

 Sessions are linkable!

 Layers

 Protocol analyzers

 Protocol transceivers

 Data highlighters

 Log filters

 Transmission extenders
(prefix/suffix/encode/checksum/etc)

 Testing utilities

 …



Plugin Architecture

 Sessions

 Sessions are linkable!

 Layers

 Protocol analyzers

 Protocol transceivers

 Data highlighters

 Log filters

 Transmission extenders
(prefix/suffix/encode/checksum/etc)

 Testing utilities

 …



Plugin Architecture

 Sessions

 Sessions are linkable!

 Layers

 Protocol analyzers

 Protocol transceivers

 Data highlighters

 Log filters

 Transmission extenders
(prefix/suffix/encode/checksum/etc)

 Testing utilities

 …



Plugin Architecture

 Sessions

 Sessions are linkable!

 Layers

 Protocol analyzers

 Protocol transceivers

 Data highlighters

 Log filters

 Transmission extenders
(prefix/suffix/encode/checksum/etc)

 Testing utilities

 …



Plugin Architecture

 Sessions

 Sessions are linkable!

 Layers

 Protocol analyzers

 Protocol transceivers

 Data highlighters

 Log filters

 Transmission extenders
(prefix/suffix/encode/checksum/etc)

 Testing utilities

 …



Jancy Scripting
C-like scripting language tailor-suited for IO programming!



Jancy IO-Related Features

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// If you know C, you can read and write Jancy!

int main()
{

printf("hello world!\n");
return 0;

}

// Calling from Jancy to native code and vice versa is as easy and 
// efficient as it gets. So is developing Jancy libraries in C/C++ and 
// Jancy bindings to popular libraries. So is porting publicly available 
// packet header definitions ans algorithms from C to Jancy -- copy-paste 
// often suffices.



Jancy IO Features Overview

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// Use pointer arithmetic -- the most elegant and the most efficient way of
// parsing and generating binary data -- and do so without worrying 
// about buffer overruns and other pointer-related issues!

IpHdr const* ipHdr = (IpHdr const*)p;
p += ipHdr.m_headerLength * 4;

switch (ipHdr.m_protocol)
{
case Proto.Icmp:

IcmpHdr const* icmpHdr = (IcmpHdr const*)p;

switch (icmpHdr.m_type)
{
case IcmpType.EchoReply:

// ...
}

case Proto.Tcp:
// ...

}

// If bounds-checks on a pointer access fail, Jancy runtime will throw 
// an exception which you can handle the way you like.



Jancy IO-Related Features

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// Schedulers allow you to elegantly place the execution of your callback 
// (completion routine, event handler, etc.) in the correct environment –
// for example, into the context of a specific thread:

class WorkerThread: jnc.Scheduler
{

override schedule(function* f())
{

// enqueue f and signal worker thread event
}
...

}

// Apply a binary operator @ (reads "at") to create a scheduled pointer to 
// your callback:

WorkerThread workerThread;
startTransaction(onComplete @ workerThread);

void onComplete(bool status)
{

// we are in the worker thread!
}



Jancy IO-Related Features

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// The async-await paradigm is becoming increasingly popular during recent years 
// -- and righfully so. In most cases, it absolutely is the right way of doing 
// asynchronous programming. As a language targeting the IO domain, Jancy fully 
// supports async-await:

async transact(char const* address)
{

await connect(address);
await modify();
await disconnect();

catch:
handleError(std.getLastError());

}

jnc.Promise* promise = transact();
promise.blockingWait();

// A cherry on top is that in Jancy you can easily control the execution 
// environment of your async procedure with schedulers -- for example, run 
// it in context of a specific thread:

jnc.Promise* promise = (transact @ m_workerThread)("my-service");

// You can even switch contexts during the execution of your async procedure!



Jancy IO-Related Features

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// Create efficient regex-based switches for tokenizing string streams:

jnc.RegexState state;
reswitch (state, p, length)
{
case "foo":

// ...
break;

case r"bar(\d+)":
print($"bar id: $(state.m_subMatchArray[0].m_text)\n");
break;

case r"\s+":
// ignore whitespace
break;

...
}

// This statement will compile into a table-driven DFA which can parse the input 
// string in O(length) -- you don't get any faster than that!

// But there's more -- the resulting DFA recognizer is incremental, which means 
// you can feed it the data chunk-by-chunk when it becomes available (e.g. once 
// received over the network).



Jancy IO-Related Features

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// Define dynamically laid-out structures with non-constant sizes of array 
// fields -- this is used in many file formats and network protocol headers 
// (i.e. the length of one field depends on the value of another):

dynamic struct FileHdr
{

...
char m_authorName[strlen(m_authorName) + 1];
char m_authorEmail[strlen(m_authorEmail) + 1];
uint8_t m_sectionCount;
SectionDesc m_sectionTable[m_sectionCount];
...

}

// In Jancy you can describe a dynamic struct, overlap your buffer with a 
// pointer to this struct and then access the fields at dynamic offsets 
// normally, just like you do with regular C-structs:

FileHdr const* hdr = buffer;
displayAuthorInfo(hdr.m_authorName, hdr.m_authorEmail);

for (size_t i = 0; i < hdr.m_sectionCount; i++)
{

processSection(hdr.m_sectionTable[i].m_offset, hdr.m_sectionTable[i].m_size);
}



Jancy IO-Related Features

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// Most network protocols use big-endian data format. In Jancy, bigendians
// are first-class citizens -- no need to manually swap byte order back and
// forth anymore!

struct IpHdr
{

uint8_t m_headerLength : 4;
uint8_t m_version : 4;
uint8_t m_typeOfService;
bigendian uint16_t m_totalLength;
bigendian uint16_t m_identification;
bigendian uint16_t m_flags : 3;
bigendian uint16_t m_fragmentOffset : 13;
uint8_t m_timeToLive;
IpProtocol m_protocol;
bigendian uint16_t m_headerChecksum;
bigendian uint32_t m_srcAddress;
bigendian uint32_t m_dstAddress;

}



Jancy IO-Related Features

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// bitflag enums allow for automatic assignment of bit position constants.
// Very handy when writing protocol definitions!

bitflag enum TcpFlags: uint8_t
{

Fin, // 0x01
Syn, // 0x02
Rst, // 0x04
Psh, // 0x08
Ack, // 0x10
Urg, // 0x20
Bog, // 0x40

}

// also, they behave naturally when used with bitwise logical operators:

TcpFlags flags = 0;
flags |= TcpFlags.Fin;
flags &= ~TcpFlags.Rst;



Jancy IO-Related Features

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// Use the most natural way possible to define binary blocks, MAC-addresses
// IP-addresses, etc.

// hexadecimal binary literal

char cr[] = 0x"0d 0a";

// hexadecimal multiline binary literal

char packet[] = 
0x"""
0d 0d 0a 54 69 62 62 6f 20 50 72 6f 6a 65 63 74
20 53 79 73 74 65 6d 20 4c 69 6e 75 78 20 34 2e
31 32 2e 31 34 2d 74 70 70 20 28 61 72 6d 76 37
6c 29 0d 0a 4f 53 20 42 75 69 6c 64 3a 20 23 31
20 57 65 64 20 46 65 62 20 32 30 20 31 34 3a 35
39 3a 34 30 20 55 54 43 20 32 30 31 39 0d 0a 48
57 20 44 61 74 65 2f 54 69 6d 65 3a 20 54 75 65
20 44 65 63 20 31 30 20 20 32 30 31 39 20 30 37
3a 32 30 3a 32 30 0d 0a
""";

// hexadecimal binary literal with colon-delimiters

uint8_t mac[6] = 0x"B0:6E:BF:34:23:13";

// decimal binary literal with dot-delimiters

uint8_t ip[4] = 0d"192.168.1.1";



Jancy IO-Related Features

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// Access the internal structure of the program at runtime; for example,
// use a struct-type information to dynamically create a representation
// for a packet:

void printStructFields(
jnc.StructType* type,
void const* p
)

{
size_t count = type.m_fieldCount;
for (size_t i = 0; i < count; i++)
{

jnc.Field* field = type.m_fieldArray[i];

char const* valueString = field.m_type.getValueString(
p + field.m_offset, 
field.findAttributeValue("formatSpec")
);

print($"%1: %2\n", field.m_name, valueString);
}

}

// ...

printStructFields(typeof(IpHdr), packet);



Jancy UI-Related Features

 Properties

 Bindable

 Indexed

 Auto-getters

 Even property pointers!

 Events

 Multicasts

 Weak

 Reactive programming

 Spreadsheet-like formulas

// Jancy provides extensive set of facilities for properties and events, 
// which allows for creation of natural and beautiful UI API-s:

opaque class Action
{

construct(
char const* text,
Icon* icon = null
);

bool autoget property m_isVisible;
bool autoget property m_isEnabled;
bool autoget property m_isCheckable;
bool bindable autoget property m_isChecked;

char const* autoget property m_text;
Icon* autoget property m_icon;

event m_onTriggered();
}



Jancy UI-Related Features

 Properties

 Bindable

 Indexed

 Auto-getters

 Even property pointers!

 Events

 Multicasts

 Weak

 Reactive programming

 Spreadsheet-like formulas

// But most importantly, Jancy features spreadsheet-like reactive programming.

// Write auto-evaluating formulas just like you do in Excel -- and stay in full 
// control of where and when to use this spreadsheet-likeness:

reactor m_uiReactor
{

m_title = $"Target address: $(m_addressCombo.m_editText)";
m_localAddressProp.m_isEnabled = m_useLocalAddressProp.m_isChecked;
m_isTransmitEnabled = m_state == State.Connected;
...

}

m_uiReactor.start(); // now UI events are handled inside the reactor...

// ...

m_uiReactor.stop(); // ...and not anymore




