
IO Ninja
Introduction



Motivation
Why did we create IO Ninja?



Debugging Tools for Serial-over-IP Devices

 Terminals

 Serial terminal

 TCP terminal 

 TCP client

 TCP server

 UDP terminal 

 UDP broadcasts required!

 Binary data handling

 Sniffers

 Serial

 TCP

 UDP



What a Mess!



Design Goals

 All-in-one IO debugger

 Consistent interface

 Cross-platform

 Advanced logging engine

 Advanced transmitting engine

 Highly modularized

 Scriptable
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All-in-One
Access all kinds of IO – through a consistent user interface!



Serial Communications
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 Local

 Remote over SSH

 Serial Hardware Sniffers
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USB Communications

 USB Data Endpoint Terminal

 USB Control Endpoint Terminal



Miscellaneous

 J-Link RTT Terminal



Ninja Scroll (Logging Engine)
Intuitive, beautiful, and lightning-fast!



Ninja Scroll Features

 Efficient with huge logs (limited by disk size only)

 Interleaving textual and binary messages in a single 
continuous log sheet

 Merging adjacent data blocks (configurable)

 Foldable records

 Detail pane (when needed)

 Relative timestamps

 View data as plain-text or hex-view 

 Find text/bin (also, across merge boundaries)

 On-the-fly calculations of offsets, length, 
checksums of selections

 Multiple modes of copying binary data (hex, text, 
C-array, save-to-file, etc.)
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Advanced Transmitting Engine
Shines at binary packet transmission!



Transmit Features
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 Hex-editor
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 Packet templates
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Highly Modularized
Lego-like – everything combines as long as it makes sense!



Application Architecture

 Main process (ioninja)

 UI frontend

 Server process (ioninja-server)

 Ninja scroll server

 Jancy runtime environment & stdlib

 API for plugin scripts

 All plugins are written in Jancy scripting 

language and open-source!
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Plugin Architecture

 Sessions
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Jancy Scripting
C-like scripting language tailor-suited for IO programming!



Jancy IO-Related Features

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// If you know C, you can read and write Jancy!

int main()
{

printf("hello world!\n");
return 0;

}

// Calling from Jancy to native code and vice versa is as easy and 
// efficient as it gets. So is developing Jancy libraries in C/C++ and 
// Jancy bindings to popular libraries. So is porting publicly available 
// packet header definitions ans algorithms from C to Jancy -- copy-paste 
// often suffices.



Jancy IO Features Overview

 High C-compatibility, both source and ABI

 Safe pointers & pointer arithmetic

 Schedulers

 Async/await

 Regex switches

 Dynamic structures

 Native support for big-endians

 Bitflag enums

 Binary & multiline literals

 Introspection

// Use pointer arithmetic -- the most elegant and the most efficient way of
// parsing and generating binary data -- and do so without worrying 
// about buffer overruns and other pointer-related issues!

IpHdr const* ipHdr = (IpHdr const*)p;
p += ipHdr.m_headerLength * 4;

switch (ipHdr.m_protocol)
{
case Proto.Icmp:

IcmpHdr const* icmpHdr = (IcmpHdr const*)p;

switch (icmpHdr.m_type)
{
case IcmpType.EchoReply:

// ...
}

case Proto.Tcp:
// ...

}

// If bounds-checks on a pointer access fail, Jancy runtime will throw 
// an exception which you can handle the way you like.
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 High C-compatibility, both source and ABI
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 Schedulers

 Async/await

 Regex switches

 Dynamic structures
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 Introspection

// Schedulers allow you to elegantly place the execution of your callback 
// (completion routine, event handler, etc.) in the correct environment –
// for example, into the context of a specific thread:

class WorkerThread: jnc.Scheduler
{

override schedule(function* f())
{

// enqueue f and signal worker thread event
}
...

}

// Apply a binary operator @ (reads "at") to create a scheduled pointer to 
// your callback:

WorkerThread workerThread;
startTransaction(onComplete @ workerThread);

void onComplete(bool status)
{

// we are in the worker thread!
}
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// The async-await paradigm is becoming increasingly popular during recent years 
// -- and righfully so. In most cases, it absolutely is the right way of doing 
// asynchronous programming. As a language targeting the IO domain, Jancy fully 
// supports async-await:

async transact(char const* address)
{

await connect(address);
await modify();
await disconnect();

catch:
handleError(std.getLastError());

}

jnc.Promise* promise = transact();
promise.blockingWait();

// A cherry on top is that in Jancy you can easily control the execution 
// environment of your async procedure with schedulers -- for example, run 
// it in context of a specific thread:

jnc.Promise* promise = (transact @ m_workerThread)("my-service");

// You can even switch contexts during the execution of your async procedure!
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// Create efficient regex-based switches for tokenizing string streams:

jnc.RegexState state;
reswitch (state, p, length)
{
case "foo":

// ...
break;

case r"bar(\d+)":
print($"bar id: $(state.m_subMatchArray[0].m_text)\n");
break;

case r"\s+":
// ignore whitespace
break;

...
}

// This statement will compile into a table-driven DFA which can parse the input 
// string in O(length) -- you don't get any faster than that!

// But there's more -- the resulting DFA recognizer is incremental, which means 
// you can feed it the data chunk-by-chunk when it becomes available (e.g. once 
// received over the network).
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// Define dynamically laid-out structures with non-constant sizes of array 
// fields -- this is used in many file formats and network protocol headers 
// (i.e. the length of one field depends on the value of another):

dynamic struct FileHdr
{

...
char m_authorName[strlen(m_authorName) + 1];
char m_authorEmail[strlen(m_authorEmail) + 1];
uint8_t m_sectionCount;
SectionDesc m_sectionTable[m_sectionCount];
...

}

// In Jancy you can describe a dynamic struct, overlap your buffer with a 
// pointer to this struct and then access the fields at dynamic offsets 
// normally, just like you do with regular C-structs:

FileHdr const* hdr = buffer;
displayAuthorInfo(hdr.m_authorName, hdr.m_authorEmail);

for (size_t i = 0; i < hdr.m_sectionCount; i++)
{

processSection(hdr.m_sectionTable[i].m_offset, hdr.m_sectionTable[i].m_size);
}
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// Most network protocols use big-endian data format. In Jancy, bigendians
// are first-class citizens -- no need to manually swap byte order back and
// forth anymore!

struct IpHdr
{

uint8_t m_headerLength : 4;
uint8_t m_version : 4;
uint8_t m_typeOfService;
bigendian uint16_t m_totalLength;
bigendian uint16_t m_identification;
bigendian uint16_t m_flags : 3;
bigendian uint16_t m_fragmentOffset : 13;
uint8_t m_timeToLive;
IpProtocol m_protocol;
bigendian uint16_t m_headerChecksum;
bigendian uint32_t m_srcAddress;
bigendian uint32_t m_dstAddress;

}
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// bitflag enums allow for automatic assignment of bit position constants.
// Very handy when writing protocol definitions!

bitflag enum TcpFlags: uint8_t
{

Fin, // 0x01
Syn, // 0x02
Rst, // 0x04
Psh, // 0x08
Ack, // 0x10
Urg, // 0x20
Bog, // 0x40

}

// also, they behave naturally when used with bitwise logical operators:

TcpFlags flags = 0;
flags |= TcpFlags.Fin;
flags &= ~TcpFlags.Rst;
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// Use the most natural way possible to define binary blocks, MAC-addresses
// IP-addresses, etc.

// hexadecimal binary literal

char cr[] = 0x"0d 0a";

// hexadecimal multiline binary literal

char packet[] = 
0x"""
0d 0d 0a 54 69 62 62 6f 20 50 72 6f 6a 65 63 74
20 53 79 73 74 65 6d 20 4c 69 6e 75 78 20 34 2e
31 32 2e 31 34 2d 74 70 70 20 28 61 72 6d 76 37
6c 29 0d 0a 4f 53 20 42 75 69 6c 64 3a 20 23 31
20 57 65 64 20 46 65 62 20 32 30 20 31 34 3a 35
39 3a 34 30 20 55 54 43 20 32 30 31 39 0d 0a 48
57 20 44 61 74 65 2f 54 69 6d 65 3a 20 54 75 65
20 44 65 63 20 31 30 20 20 32 30 31 39 20 30 37
3a 32 30 3a 32 30 0d 0a
""";

// hexadecimal binary literal with colon-delimiters

uint8_t mac[6] = 0x"B0:6E:BF:34:23:13";

// decimal binary literal with dot-delimiters

uint8_t ip[4] = 0d"192.168.1.1";
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// Access the internal structure of the program at runtime; for example,
// use a struct-type information to dynamically create a representation
// for a packet:

void printStructFields(
jnc.StructType* type,
void const* p
)

{
size_t count = type.m_fieldCount;
for (size_t i = 0; i < count; i++)
{

jnc.Field* field = type.m_fieldArray[i];

char const* valueString = field.m_type.getValueString(
p + field.m_offset, 
field.findAttributeValue("formatSpec")
);

print($"%1: %2\n", field.m_name, valueString);
}

}

// ...

printStructFields(typeof(IpHdr), packet);



Jancy UI-Related Features

 Properties

 Bindable

 Indexed

 Auto-getters

 Even property pointers!

 Events

 Multicasts

 Weak

 Reactive programming

 Spreadsheet-like formulas

// Jancy provides extensive set of facilities for properties and events, 
// which allows for creation of natural and beautiful UI API-s:

opaque class Action
{

construct(
char const* text,
Icon* icon = null
);

bool autoget property m_isVisible;
bool autoget property m_isEnabled;
bool autoget property m_isCheckable;
bool bindable autoget property m_isChecked;

char const* autoget property m_text;
Icon* autoget property m_icon;

event m_onTriggered();
}
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// But most importantly, Jancy features spreadsheet-like reactive programming.

// Write auto-evaluating formulas just like you do in Excel -- and stay in full 
// control of where and when to use this spreadsheet-likeness:

reactor m_uiReactor
{

m_title = $"Target address: $(m_addressCombo.m_editText)";
m_localAddressProp.m_isEnabled = m_useLocalAddressProp.m_isChecked;
m_isTransmitEnabled = m_state == State.Connected;
...

}

m_uiReactor.start(); // now UI events are handled inside the reactor...

// ...

m_uiReactor.stop(); // ...and not anymore




